Desensitization and trafficking of μ-opioid receptors in locus ceruleus neurons: modulation by kinases.
نویسندگان
چکیده
The phosphorylation of μ-opioid receptors (MOPRs) by G protein-coupled receptor kinases (GRKs), followed by arrestin binding, is thought to be a key pathway leading to desensitization and internalization. The present study used the combination of intracellular and whole-cell recordings from rats and mice, as well as live cell imaging of Flag-tagged MOPRs from mouse locus ceruleus neurons, to examine the role of protein kinases in acute desensitization and receptor trafficking. Inhibition of GRKs by using heparin or GRK2-mutant mice did not block desensitization or alter the rate of recovery from desensitization. The nonselective kinase inhibitor staurosporine did not reduce the extent of [Met(5)]enkephalin (ME)-induced desensitization but increased the rate of recovery from desensitization. In the presence of staurosporine, ME-activated FlagMOPRs were internalized but did not traffic away from the plasma membrane. The increased rate of recovery from desensitization correlated with the enhancement in the recycling of receptors to the plasma membrane. ME-induced MOPR desensitization persisted and the trafficking of receptors was modified after inhibition of protein kinases. The results suggest that desensitization of MOPRs may be an early step after agonist binding that is modulated by but is not dependent on kinase activity.
منابع مشابه
Cellular morphine tolerance produced by βarrestin-2-dependent impairment of μ-opioid receptor resensitization.
Chronic morphine treatment produces behavioral and cellular opioid tolerance that has been proposed to be caused by attenuated μ-opioid receptor (MOR) recovery from desensitization (resensitization). The process of MOR resensitization is thought to require βarrestin-2 (βarr-2)-dependent trafficking of desensitized receptors to endosomal compartments, followed by recycling of resensitized recept...
متن کاملμ-Opioid receptor desensitization: homologous or heterologous?
There is considerable controversy over whether μ-opioid receptor (MOPr) desensitization is homologous or heterologous and over the mechanisms underlying such desensitization. In different cell types MOPr desensitization has been reported to involve receptor phosphorylation by various kinases, including G-protein-coupled receptor kinases (GRKs), second messenger and other kinases as well as pert...
متن کاملDesensitization and Tolerance of Mu Opioid Receptors on Pontine Kölliker-Fuse Neurons.
Acute desensitization of mu opioid receptors is thought to be an initial step in the development of tolerance to opioids. Given the resistance of the respiratory system to develop tolerance, desensitization of neurons in the Kölliker-Fuse (KF), a key area in the respiratory circuit, was examined. The activation of G protein-coupled inwardly rectifying potassium current was measured using whole-...
متن کاملMorphine desensitization and cellular tolerance are distinguished in rat locus ceruleus neurons.
μ-Opioid receptor desensitization is considered an initial step in the development of tolerance. Curiously, the commonly used opioid morphine produces robust tolerance but minimal acute desensitization. This study was designed to test the hypothesis that desensitization is indeed present in morphine-treated animals and is distinguished from cellular tolerance by time course of recovery and mech...
متن کاملDifferential activation and trafficking of micro-opioid receptors in brain slices.
The activation of G protein-coupled receptors results in a cascade of events that include acute signaling, desensitization, and internalization, and it is thought that not all agonists affect each process to the same extent. The early steps in opioid receptor signaling, including desensitization, have been characterized electrophysiologically using brain slice preparations, whereas most previou...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular pharmacology
دوره 81 3 شماره
صفحات -
تاریخ انتشار 2012